Suárez, P. L., Carpio, D., & Sappa, A. D. “Non-homogeneous Haze Removal Through a Multiple Attention Module Architecture”. In International Symposium on Visual Computing. 2021, October, pp. 178-190. Springer, Cham.
This paper presents a novel attention based architecture to remove non-homogeneous haze. The proposed model is focused on obtaining the most representative characteristics of the image, at each learning cycle, by means of adaptive attention modules coupled with a residual learning convolutional network. The latter is based on the Res2Net model. The proposed architecture is trained with just a few set of images. Its performance is evaluated on a public benchmark—images from the non-homogeneous haze NTIRE 2021 challenge—and compared with state of the art approaches reaching the best result.
2023 - CYTED. Todos los derechos reservados